Minimally ramified deformations when
نویسندگان
چکیده
منابع مشابه
When Shape Matters: Deformations of Tiling Spaces
We investigate the dynamics of tiling dynamical systems and their deformations. If two tiling systems have identical combinatorics, then the tiling spaces are homeomorphic, but their dynamical properties may differ. There is a natural map I from the parameter space of possible shapes of tiles to H of a model tiling space, with values in R. Two tiling spaces that have the same image under I are ...
متن کاملRamified Frege Arithmetic
Frege’s definitions of zero, predecession, and natural number will be explained below. As for second-order Dedekind-Peano arithmetic, the axiomatization most convenient for our purposes is the following: (1) N0 (2) Nx∧Pxy→ Ny (3) ∀x∀y∀z(Nx∧Pxy∧Pxz→ y = z) (4) ∀x∀y∀z(Nx∧Ny∧Pxz∧Pyz→ x = y) (5) ¬∃x(Nx∧Px0) (6) ∀x(Nx→∃y(Pxy)) (7) ∀F(F0∧∀x∀y(Nx∧Fx∧Pxy→ Fy)→∀x(Nx→ Fx) If (slightly non-standardly) we ...
متن کاملDiscriminants and Ramified Primes
has some ei greater than 1. If every ei equals 1, we say p is unramified in K. Example 1.1. In Z[i], the only prime which ramifies is 2: (2) = (1 + i)2. Example 1.2. Let K = Q(α) where α is a root of f(X) = T 3 − 9T − 6. Then 6 = α3 − 9α = α(α− 3)(α+ 3). For m ∈ Z, α+m has minimal polynomial f(T −m) in Q[T ], so NK/Q(α+m) = −f(−m) = m3 − 9m+ 6 and the principal ideal (α−m) has norm N(α−m) = |m ...
متن کاملFinitely Ramified Iterated Extensions
Let p be a prime number, K a number field, and S a finite set of places of K. Let KS be the compositum of all extensions of K (in a fixed algebraic closure K) which are unramified outside S, and put GK,S = Gal(KS/K) for its Galois group. These arithmetic fundamental groups play a very important role in number theory. Algebraic geometry provides the most fruitful known source of information conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2018
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x18007546